Pythagoras Theorem

A Pythagoras Theorem is a mathematical relation amongest three sides of a right triangle namely the hypotenuse, adjacent and opposite.



The Pythagoras Theorem has the following mathematical formula

a 2 + b 2 = c 2

hypotenuse 2 = adjacent 2 + opposite 2

hypotenuse 2 = base 2 + height 2

How to solve Pythagoras Theorem step by step

In the right angled-triangle ABC below find the value of x in meters(m)

Pythagoras showing right angled-triangle

Pythagoras Theorem Formula from the above diagram

BC 2 + AB 2 = AC 2

BC = 7 + x , AB = 5 + x , AC = 2x

Substitute into the formula

(7 + x) 2 + (5 + x) 2 = (2x) 2

Expand and simplify

(7 + x)(7 + x) + (5 + x)(5 + x) = (2x)(2x)

7× 7 + 7 × x + x × 7 + x × x = 5 × 5 + 5 × x + x × 5 + x × x + 4x 2

49 + 7x + 7x + x 2 = 25 + 5x + 5x + x 2 + 4x 2

Adding like terms on each side we have

49 + 14x + x 2 = 25 + 10x + 5x 2

Collecting like terms we have

49 - 25 + 14x - 10x + x 2 - 5x 2

Adding and subtracting

24 + 4x - 4x 2 = 0

Rewriting the equation we have

4x 2 - 4x - 24 = 0

From the above quadratic equation find the value of x by factorising

4x 2 - 4x - 24 = 0

Simplify the quadratic equation

4x 2 4 - 4x 4 - 24 4 = 0 4

x 2 - x - 6 = 0

product = -6

Sum = -1

Factors = -3, 2

x 2 + ( 2x - 3x ) - 6 = 0

x 2 + 2x - 3x - 6 = 0

x ( x + 2 ) - 3 ( x + 2 ) = 0

( x + 2 ) = 0 or ( x - 3 ) = 0

x = 3 or x = -2

Pythagoras Example

Let AB and BC be the slant height in a diagram below. Hence find the lenth BC

Pythagoras diagram

a 2 = b 2 + c 2

Solutions:

BC 2 = BD 2 + DC 2

Given that BC = ? , BD = 24mm and DC = 7mm

BC 2 = 24 2 + 7 2

BC 2 = 24 + 24 + 7 + 7

BC 2 = 576 + 49

BC 2 = 625

BC = 625

Answers: BC = 25mm

How to find distance using Pythagoras

Calculate the distance x taken by a boy to move from the cliff

Pythagoras distance using Pythagoras

X 2 = 10 2 + 12 2

X 2 = 100 + 144

X 2 = 244

X 2 = 244

X = 15.62

How to use pythagoras theorem

Two buildings are built next to each other and are joined by a footbrigdge of lenth 20 meters and the distance between than is 15 metres. Find the height h

Pythagoras example 4

hypotenuse 2 = adjacent 2 + opposite 2

20 2 = 15 2 + h 2

h 2 = 20 2 - 15 2

h 2 = 400 - 225

h 2 = 175

h 2 = 175

h = 13.23 m

How to solve Pythagoras Theorem

It takes 8 km for a drive to move from town B to town A and 6km from town A to town C , find the distance the drive will take to travel from time C to town B

Pythagoras example 5

BC 2 = AB 2 + AC 2

BC = AB 2 + AC 2

BC = 8 2 + 6 2

BC = 64 + 36

BC = 100

BC = 10 km